

8-bit
Microcontrollers

Application Note

Rev. 8098A-AVR-09/07

AVR463: Charging Nickel-Metal Hydride
Batteries with ATAVRBC100

Features
• Fully Functional Design for Charging Nickel-Metal Hydride Batteries
• High Accuracy Measurement with 10-bit A/D Converter
• Modular “C” Source Code
• Easily Adjustable Battery and Charge Parameters
• Serial Interface for Communication with External Master
• One-wire Interface for Communication with Battery EEPROM
• Analogue Inputs for Reading Battery ID and Temperature
• Internal Temperature Sensor for Enhanced Thermal Management
• On-chip EEPROM for Storage of Battery and Run-Time Parameters

1 Introduction
This application note is based on the ATAVRBC100 Battery Charger reference
design (BC100) and focuses on how to use the reference design to charge Nickel-
Metal Hydride (NiMH) batteries. The firmware is written entirely in C language
(using IAR Systems Embedded Workbench) and is easy to port to other AVR®
microcontrollers.

This application is based on the ATtiny861 microcontroller but it is possible to
migrate the design to other AVR microcontrollers, such as pin-compatible devices
ATtiny261 and ATtiny461. Low pin count devices such as ATtiny25/45/85 can also
be used, but with reduced functionality.

2 AVR463
8098A-AVR-09/07

2 Theory of Operation
Battery charging is made possible by a reversible chemical reaction that restores
energy in a chemical system. Depending on the chemicals used, the battery will have
certain characteristics. A detailed knowledge of these characteristics is required in
order to avoid inflicting damage to the battery.

2.1 NiMH Battery Technology
Nickel-Metal Hydride (NiMH) battery technology is the successor of Nickel-Cadmium
(NiCd), and is considered a stepping-stone to lithium-based batteries. Its
characteristics are quite similar to NiCd, but offers approximately 50% higher energy
density at the cost of reduced cycle life [1] (see References page 25). NiMH does not
suffer so much from the memory effect as NiCd, and therefore needs fewer exercise
cycles during storage. In addition, NiMH batteries are more environmentally friendly
as they contain no cadmium, and therefore pose less of a problem regarding
disposal. Currently, it is being used in everything from cameras, PDAs and power
tools to hybrid cars.

Although Li-Ion batteries offer almost twice the energy density, higher cell voltage and
shorter charge times, they are not as stable as nickel-based batteries. Also, since
nickel-based batteries have a voltage close to the regular 1.5V Zinc Carbon and
Alkaline batteries, they are more suitable for use in existing equipment powered by
such batteries.

Compared to NiCd, the drawbacks of NiMH batteries include a slightly higher self-
discharge rate (approximately 20% per month at room temperature), lower
overcharge tolerance, shorter cycle life (300-500 charge cycles) and longer charge
time as it generates more heat.

2.1.1 Safety

Nickel-based batteries are quite stable, but might vent gas or explode if severely
mishandled (short circuited, charged with the wrong charger, etc.) due to internal
pressure and heat build-up. Most batteries come with a safety vent, thermal
fuse/switch or pressure switch to help prevent this.

2.2 Charging NiMH Batteries
The most common method for recharging nickel-based batteries is with a constant
current. In general, the charge current is recommended in the range 0.5 – 1.0 C1 (fast
charge) since slow charging causes crystalline formation, also known as memory
effect, and lesser charge efficiency [7]. Greater currents than this, on the other hand,
may cause damage. It is also more difficult to detect a full charge of NiMH batteries at
low charge currents.

NiMH batteries are between 70% and 90% charge efficient, meaning you must
charge for longer than one would calculate from a given charge current and battery
capacity.

1 C represents the battery’s capacity per hour, i.e. mA.

 AVR463

 3

8098A-AVR-09/07

2.2.1 Safety

Towards the end of a charge cycle, the positive electrode of the battery will reach full
charge first, causing it to produce oxygen. To avoid pressure build-up in the cell, the
oxygen is recombined at the negative electrode to produce water. This process does
however generate heat, and it relies on the charge current to be limited so that the
oxygen generation rate is not greater than the recombination rate.

Should a pressure build-up occur, most batteries have a safety vent or even a
pressure switch that will cut off the charge current once the pressure gets too high.
The venting of gas deteriorates the battery as electrolyte is lost. More advanced
batteries have safety electronics that activate once pressure or temperature exceeds
a threshold.

2.2.2 Battery Temperature

As mentioned, NiMH batteries generate heat during charging and it is therefore
important to monitor the battery temperature to prevent damage. Suggested
temperature ranges for fast charging are in the area 5 - 45°C, but temperatures
between 45°C and 60 °C are acceptable for a short period at the end of a charge. [5]
[6].

Naturally, great currents cause a faster increase in temperature. High temperatures
decrease cell voltage and charge efficiency, and cause a higher rate of self-
discharge. Cooling the batteries with a fan is sometimes done to maximize efficiency,
though lower temperatures slow the oxygen recombination, possibly causing a faster
pressure build-up.

2.2.3 Charge Time

Determining for how long to charge is not so easy since a battery’s state of charge
cannot be reliably determined from its voltage. In addition, it depends on the battery’s
capacity and the charge current.

Due to charge inefficiency, the ideal charge input lies in the area 120 – 150%,
depending on if maximum cycle life (120%) or capacity (150%) is wanted. Assuming a
1.0 C charge current, a full charge of an empty battery should therefore take between
1.2 hours and 1.5 hours. Since NiMH batteries are not as tolerant of overcharge as
NiCd ones, measures must be taken to detect a full charge.

2.2.4 Full Charge Detection

At about 60% charge input the heat generation in NiMH cells starts to increase, and
may be used to detect a full charge. It is recommended to end the charge once the
rate of temperature increase reaches 1 °C per minute [5] [6].

Another sign of a full charge is a drop in voltage due to the oxygen recombination,
though this is not as pronounced at high temperatures or low charge currents.
Suggested limits are in the range 6 - 20 mV per cell. A low limit will reduce the
amount of overcharging, but also heightens the risk of prematurely ending the charge
due to electrical noise or other normal drops in voltage during charging.

2.2.5 Typical Fast Charge Characteristics

Battery specifications should always be verified from manufacturer’s data sheets.
Below is a summary of typical nickel-metal hydride battery fast charge characteristics.

4 AVR463
8098A-AVR-09/07

Table 2-1. Typical Charge Characteristics for Fast Charge
Parameter Typical Value

Charge time 1.5 - 3 hours

Charge current 0.5 – 1 C

Charge efficiency 70 – 90 %

Charge voltage 1.4 – 1.6 V

Temperature range 5 … 60 °C (max)

2.2.6 Typical Battery Characteristics

The table below summarises general data for NiMH batteries [5] [6].

Table 2-2. Typical NiMH Battery Characteristics
Parameter Typical Value

Nominal voltage 1.2 V

Open circuit voltage 1.25 – 1.35 V

Typical end voltage 1.0 V

2.2.7 Three Step Fast Charge

The chosen charge procedure for this application is a fast charge followed by a
topping charge, as recommended in literature and by battery & charger
manufacturers. This does however require that the batteries’ specifications are
defined at compile time since we otherwise don’t know them. The procedure is as
follows:

• Prequalification – Charge at low current (0.1 C) for at most 2 (TBD) minutes,
until battery voltage reaches 1.0 V. Timeout means battery is quite likely
damaged.

• Fast charge – Charge at high current (C) for at most 1.5 hours, until either the
rate of temperature increase reaches 1 °C per minute or the voltage drops
with 15 mV per cell.

• Low rate charge – Top up the battery with a low current (0.1 C) for 30
minutes, to ensure a full charge. This current is low enough for oxygen
recombination to keep up, in case of an overcharge.

For safety, a temperature limit of 50 °C has been set for the last two stages, and 35
°C for the first.

It is also recommended to leave the batteries on a trickle charge (0.003 C – 0.05 C)
for an indefinite duration, to counteract self-discharge. This has not been
implemented, but may easily be done so by changing the end charge stage in
Charge(). It would be beneficial to switch between the batteries at regular intervals,
which would also allow for detection of uncharged batteries.

2.3 Battery Charger
This application note targets the ATAVRBC100 Battery Charger reference design by
Atmel. The reference design is rather complex and has loads of features but this
application focuses on the core feature of the design, the buck converters, only. For

 AVR463

 5

8098A-AVR-09/07

more information on the BC100, please refer to application note AVR451 - BC100
Hardware User's Guide [2].

2.3.1 Microcontroller

The BC100 hosts two microcontrollers: a master (ATmega644) and a slave (an
ATtiny85 or ATtiny861, by default). The master microcontroller is outside the scope of
this application but it may be noted that the microcontrollers are capable of
communicating with each other such that the master may request data from the slave
at any time.

The slave microcontroller is fully capable of handling all tasks related to battery
charging and it does not require a master microcontroller to be present. It constantly
scans the connectors for batteries and, if found, charges them when required. The
slave microcontroller also constantly monitors the hardware for any anomalies.

2.3.2 Power supply

This application note does not focus on the power supply. It may, however, be noted
that the firmware constantly monitors the input voltage levels in order to make sure
operation is reliable.

2.3.3 Buck switches

The firmware on the slave microcontroller controls any of the three buck converters
on board the BC100. The default is to use a high-speed PWM output of the
microcontroller to adjust the voltage and current flow to the battery. The voltage (and
current) of the buck converters is directly proportional to the duty cycle of the PWM
signal.

3 Battery Charger Hardware
This application note is based on the ATAVRBC100 Battery Charger reference
design. A detailed hardware description will not be provided in this document. Please
see AVR451 - BC100 Hardware User's Guide for detailed information.

3.1 Configuration
The ATAVRBC100 Battery Charger reference design must be configured as detailed
below.

3.1.1 Microcontroller

The hardware should be populated as follows:

• Make sure socket SC300 is empty
• Populate socket SC301 with an ATtiny861

It is possible to use other AVR microcontrollers but this application has been
optimised for using ATtiny861. Pin compatible replacements such as ATtiny261 and
ATtiny461 [3] may be used if the compiled code size is decreased. This can be done
by increasing the optimisation of the compiler and by removing unwanted features
from the firmware.

Other microcontroller options include ATtiny25, ATtiny45 and ATtiny85 [4]. These (as
well as other 8-pin AVR microcontrollers) use the SC300 socket on BC100. It should

6 AVR463
8098A-AVR-09/07

be noted that due to reduced pin count the 8-pin microcontrollers provide less
features than the default 20-pin.

3.1.2 Programming Connector

The microcontroller can be programmed via 6-pin connector J301, using either SPI or
debugWIRE.

Please note that in some hardware revisions of BC100 it may be necessary to
remove R303 and tri-state pin 15 of U202 (set /OE low from the mega644). This
procedure frees the /RESET line for use by external programmer or debugger but
removes the possibility for the master microcontroller to reset the slave. Do not alter
the board unless required. Alternatively, the microcontroller can always be
programmed off-board.

3.1.3 Jumpers

The jumpers should be configured as follows:

• J405 & J406: Set jumpers to 1/4 (max measurable voltage 10V)
• For 300 mAh battery: J401, J404 and J408 should be set to enable Buck converter

C (20V / 1A)
• For 1300 mAh battery: J400, J401, J403, J408 and J407 should be set to enable

Buck converter B (30V / 2.5A)

Other configurations are possible, but may require firmware changes. See variable
VBAT_RANGE in file ADC.h.

3.1.4 Battery

For testing of this application, two generic 3-cell NiMH batteries from Minamoto were
used. The only data available were the specific capacity and nominal voltage. Both
batteries were rated at 3.6 V, with the respective capacities 300 mAh and 1300 mAh.
These batteries did not include Resistor ID, EPROM or NTC.

3.1.5 Battery Resistor ID

Some batteries may include a Resistor ID (RID), which is used to identify the battery
type. The charger can then know data such as capacity, maximum charge current
and charge time, instead of keeping these parameters static. If RID is used, the
resistor values and the associated data are available from the battery manufacturer.
This application supports but does not require RID, and if used, the RID lookup-table
should be updated. The resistor should be connected as follows:

Table 3-1. Connecting battery resistor ID to charger
Battery Pin Charger Connector

RID SCL

GND BATTERY-

If a Resistor ID is not connected, or its value causes ADC saturation, default battery
data may be used. See Configuration on page 22.

 AVR463

 7

8098A-AVR-09/07

3.1.6 NTC

Temperature measurement during fast charge of NiMH batteries is vital, and some
manufacturers therefore often include a thermistor in their batteries. Usually, these
have a negative temperature coefficient (NTC).

For this application, an RH16-3H103FB NTC from Mitsubishi was employed, and the
NTC lookup-table populated accordingly. The NTC should be connected as follows:

Table 3-2. Connecting NTC thermistor to charger
Battery Pin Charger Connector

NTC NTC/RID

GND BATTERY-

In this application, if an NTC is not connected, the ADC will be saturated and
temperature registered as -1 °C. This will halt the charging, unless a sub zero
minimum battery temperature has been set.

3.1.7 Data EPROM

Some batteries are equipped with an embedded EEPROM for storing charge and
manufacturing data. This application supports the reading of EEPROM via a one-wire
interface. The default is a DS2502 EEPROM connected as follows.

Table 3-3. Connecting external EPROM DS2502 to charger
EPROM Pin Charger Connector

DATA 1-WIRE/SDA

GND BATTERY-

If an EPROM is not connected to the battery charger the application will simply
disregard its absence.

3.1.8 Supply Voltage

The higher the supply voltage, the higher the minimum current the buck switches can
provide. For example, if supply voltage is about 9 V and buck charger C is used to
charge a battery at 4.20 V then the minimum attainable current is about 80 mA. At
this point the smallest decrease in PWM duty cycle (i.e. reducing the contents of
OCR1B by 1) will effectively turn off the current to the battery.

It is recommended to use a supply voltage some three volts above battery charge
voltage. In this application the battery voltage will typically max out at 4.5 V during
charging, so the recommended supply voltage is 7.5 V.

Another method to lower the minimum charge current the hardware can provide is to
use a buck switch with a large inductor. In BC100 this means Buck Switch A.

4 Battery Charger Software
The firmware is written in C language using IAR Systems Embedded WorkbenchTM.
Since the firmware has been written entirely in C, it should not be a difficult task to
port it to other AVR C-compilers. Some compiler specific details will probably need to
be rewritten.

8 AVR463
8098A-AVR-09/07

The table below lists the files that are relevant to the compiler project.

Table 4-1. Project files
File Type Note

ADC.c C source code

ADC.h Header file
Functions related to A/D conversion

battery.c C source code

battery.h Header file

Functions related to battery control &
data acquisition, and definition of default
battery data

chargefunc.c C source code

chargefunc.h Header file
Functions related to charging

enums.h Header file
Enumerations for time.c and USI.c,
which are used in both Slave and Master
(SPI communication)

main.c C source code

main.h Header file
Main program / Program entry point

menu.c C source code

menu.h Header file
State machine definitions

NIMHcharge.c C source code

charge.h Header file
The charge state function for charging of
NiMH batteries

NIMHspecs.h Header file Definitions of NiMH cell & battery
specifications

OWI.c C source code

OWI.h Header file
Functions related to one-wire interface

PWM.c C source code

PWM.h Header file
Functions related to generating pulse-
width modulated output

statefunc.c C source code

statefunc.h Header file
The different state functions

structs.h Header file
Structs for ADC.c and battery c, which
are used in both Slave and Master (SPI
communication)

time.c C source code

time.h Header file
Functions related to timekeeping and
measurement of time

USI.c C source code

USI.h Header file
Functions related to serial interface (SPI
communcation)

4.1 Overview
The firmware integrates all functions required to charge two NiMH batteries. Batteries
are connected to separate ports such that one may be charged while the other is idle.
The firmware is fully automated and capable of stand-alone battery monitoring and
charging but it may also be used together with a master microcontroller, such as the
one implemented in BC100.

By default, the firmware fits into an ATtiny861 (build option: debug) or an ATtiny461
(build option: release). Memory requirements of the firmware are summarised in the
table below.

 AVR463

Table 4-2. Memory requirements of firmware
Build option Memory Approximate value

CODE (Flash) 5800 bytes

DATA (SRAM) 270 bytes Debug

XDATA (EEPROM) 130 bytes

CODE (Flash) 3900 bytes

DATA (SRAM) 270 bytes Release

XDATA (EEPROM) 130 bytes

4.2 State Machine
The state machine is rather simple and resides in the main() function. It simply looks
up the address of the next function to execute and then jumps to that function. The
flow chart of the state machine is illustrated in the figure below.

Figure 4-1. Flow chart of main function, including the state machine
main()

Set Current State = INIT

Look up address for Current State

Jump to function of Current State

Look up address for Next State

Set Current State = Next State

State function
Next State

Upon return, the state machine expects the function to indicate the next state as a
return argument. The recognised return codes are described in the table below.

Table 4-3. State machine codes (see source code, menu.h)
Label (1) Related Function (2) Description

INIT Initialize() Entry state

BATCON BatteryControl() Check hardware and batteries

PREQUAL Charge() Raise battery voltage, safety check.

SLEEP Sleep() Low power consumption mode

FASTCHARGE Charge() Charge with constant current at 1.0 C.

TRICKLECHARGE Charge() Charge with constant current at 0.1 C.

ENDCHARGE Charge() End of successful charge

DISCHARGE Discharge()

ERROR Error() Resolve error, if possible

Notes: 1. Name of label, excluding leading “ST_”
2. Function name, as declared in source code

 9

8098A-AVR-09/07

10 AVR463

State functions are described in the following sections.

4.2.1 Initialize()

The initialisation function is the first state function that will be executed after device
reset. The flow chart of the function is shown in the figure below.

Figure 4-2. Flow chart of initialisation function
Initialize()

Set clock prescaler to 1

Initialize One-Wire Interface

Configure I/O pins and disable all batteries

Initialize Serial Peripheral Interface

Initialize Analoguo-to-Digital Converter

Read data from all batteries

Initialize timer functions

Return(BATCON)

The initialisation function always exits with the same return code, pointing to the state
function for battery control.

4.2.2 BatteryControl()

The battery control function verifies that jumpers are set correctly and then checks to
see if there are any enabled batteries present that require charging. The program flow
is illustrated in the figure below.

8098A-AVR-09/07

 AVR463

Figure 4-3. Flow chart of battery control function
BatteryControl()

JumperCheck()

JumperCheck()
OK?

Return(ERROR)

Any batteries
enabled?

Any battery:
Status OK and not

charged

Flag Error: no batteries enabled

Return(ERROR)

NO

NO

YES

YES

Disable (disconnect) all batteries

Return(SLEEP)

NO

Refresh data for selected data

Return(PREQUAL)

4.2.3 Charge()

The charge function contains the charging algorithm divided into stages. For this
application, it has four stages:

• Prequalification – If the battery voltage is between 0.8 V and 1.0 V, charge at
a low rate like 0.1 C for 2 minutes. If the voltage doesn’t rise to 1.0 V within
the time limit, the battery is likely damaged. Limit max. temperature to 35 °C.

• Fast charge – Charge at 1.0 C for 1.5 hours at maximum, and terminate
when voltage drops 10 – 15 mV per cell or the rate of temperature increase
reaches 1 °C per minute. Limit maximum temperature to 50 °C.

• Top-up charge – Top the battery up with a 0.1 C charge current for 30
minutes. Limit maximum temperature to 50 °C.

• End charge – Decide whether to go into the sleep state or to attempt a
charge of the other battery.

ChargeParameters and HaltParameters are central variables in this function. After
each stage, the function returns the next desired state to main(). The program flow of
this state function is illustrated in the figure below.

 11

8098A-AVR-09/07

12 AVR463

Figure 4-4. Flow chart of the charge state function
Charge()

What is the current
state?

Set charge current to 0.1 C.
(BattData.Capacty / 10)

Set charge current to 1.0 C
(BattData.Capacity)

Set charge current to 0.1 C.
(BattData.Capacity / 10)

ST_PREQUAL

ST_FASTCHARGE ST_LOWRATECHARG
E

ST_ENDCHARGE

Set voltage limit to defined
limit.

(BAT_VOLTAGE_PREQUAL)

Set ST_FASTCHARGE as the
next desired state.

Set maximum voltage and
voltage drop limit to the

defined values.
(BAT_VOLTAGE_MAX &
BAT_VOLTAGE_DROP)

Flag that charging should halt
once voltage reaches limit or

time runs out, and that
timeout means that battery is

exhausted.

Set minimum and maximum
temperature.

(BAT_TEMPERATURE_MIN
& 35)

Start PWM output.

Start charge timer with
defined limit.

(BAT_TIME_PREQUAL)

Call ConstantCurrent()
to start charging, get
next state in return.

Return next state to
main().

Set ST_LOWRATECHARGE
as the next desired state.

Start charge timer with
1.5 hour limit.

Call ConstantCurrent()
to continue charging,

get next state in return.

Set ST_ENDCHARGE as the
next desired state.

Reset VBATMax.

Callt ConstantVoltage()
to continue charging,

get next state in return.

Stop PWM output.

Flag battery as charged.

Is the other battery
enabled?

Set ST_BATCON as
next state.

Set ST_SLEEP as next
state.

YES

NO

Set maximum temperature.
(BAT_TEMPERATURE_MAX)

Reset VBATMax.

Flag that charging should halt
on maximum voltage, voltage

drop, timeout or maximum
temperature rise.

Start charge timer with
30 minute limit.

4.2.4 Sleep()

The application enters sleep mode when all batteries have been fully charged. It
wakes up at regular intervals to check the current status of the batteries. Sleep mode
is terminated as soon as any battery requires charging.

8098A-AVR-09/07

 AVR463

Sleep mode is illustrated in the flow chart below.

Figure 4-5. Flow chart of sleep function
Sleep()

Sleep for 8 seconds

Enable actual battery

Set first battery to actual

Actual battery
charged?

First battery
actual?

Return(BATCON)

Set second battery to actual

YES

NO

YES

NO

4.2.5 Error()

Program flow is diverted here when an error has occurred. The error handler contains
some simple algorithms that try to resolve the most common problems. Program
execution will exit the error handler when all sources of error have been cleared.

The program flow is illustrated in the figure below.

 13

8098A-AVR-09/07

14 AVR463

Figure 4-6. Flow chart of error handler
Error()

Stop PWM output

Disable all batteries

Sleep for 8 seconds

Jumper
mismatch

error?

Check jumpers

Clear bit in error flag

NO
batteries

error?

Any batteries
enabled?

Clear bit in error flag

PWM
control
error?

Clear bit in error flag

Battery
temperature

error?

Clear bit in error flag

YES

NO

YES

YES

NO

NO

YES

NO

YES

Battery
exhausted

error?

Any error
 flags set?

NO

Clear battery exhausted bit

Change active battery

Clear bit in error flag

Return(INIT)

NOYes

YES

8098A-AVR-09/07

 AVR463

4.3 Charging Functions
These functions are called by Charge() after all parameters have been set.

4.3.1 Constant Current/Voltage

These two functions are similar, apart from what ADC measurements they try to keep
within limits. Therefore, only the flow chart for ConstantCurrent() is illustrated in the
figure below. They both make use of the variable ChargeParameters.

If a Master microcontroller is present, it may temporarily stop the charging by flagging
a charge inhibit. This is to prevent battery damage during prolonged serial transfers.

Figure 4-7. Flow chart for ConstantCurrent()

ConstantCurrent()

Charging of
battery inhibited?

Were we
stopped by

Master MCU
earlier?

Flag that Master
MCU stopped the

charging.

Stop timers.

Drop PWM output
to zero.

YES

NO

Start timers
again.

YES

Current below
hysteresis?

NO

Remove flag that
Master MCU
stopped the

charging.

Current above
hysteresis?

Increment
PWM duty

cycle.
YES

Decrement
PWM duty

cycle.
YES

HaltNow()?

NO

NO

Return next state.

YES

Wait for
ADC

conversions
to complete.

NO

 15

8098A-AVR-09/07

16 AVR463

4.3.2 Charge Halt Determination

Charge halt is determined by HaltNow(). This function is called by ConstantCurrent()
and ConstantVoltage() every time they loop, to decide if a stage of charging is done.

With the variable HaltParameters the user can specify at what terms the charging
should be halted, and if an error should be flagged if e.g. the time limit expires. An
error flag will also result in ST_ERROR being set as the next state, thereby aborting
the charge. If no errors are flagged, the next desired state, set earlier in Charge(), will
apply.

Lastly, the function checks if temperature is within limits, if the battery is OK and if
mains voltage is above minimum. Should any of these tests fail, the next state is set
to an appropriate error handler (ST_ERROR, ST_INIT or ST_SLEEP) and charging is
aborted.

Figure 4-8. Flow chart for HaltNow() part 1.
HaltNow()

Wait for ADC
conversions to

finish.

Halt on voltage
drop selected?

Halt on maximum
voltage selected?

Halt on minimum
current selected?

Output voltage
higher than stored

maximum?
YES

Store new
maximum.

Voltage drop above
or equal to limit?NO

YES

NO

NO

Set Halt flag.

YES

Output voltage
above or equal to

limit?
YES Set Halt flag.YES

NO
NO

Output current
below or equal to

limit?
YES Set Halt flag.YES

NO

1

NO

8098A-AVR-09/07

 AVR463

Figure 4-9. Flow chart for HaltNow() part 2

1

Halt on
temperature rise?

Measured NTC
above stored NTC?

YES

Store NTC value.

Start
temperature

timer.

YES

Difference between stored
and measured NTC above or

equal to limit?

NO

Temperature
timer expired?YESNO

NO

Set Halt flag.

NO

Store NTC value.YES

Reset
temperature

timer.

2

 17

8098A-AVR-09/07

18 AVR463

Figure 4-10. Flow chart for HaltNow() part 3

2

Halt on timeout?

Charging timer run
out?

YES

NO

YES

Set Halt flag.

Flag battery
exhaustion?

NO

Stop PWM
output.YES

Disable battery and
flag it as

exhausted.

Flag battery
exhaustion error

and set
ST_ERROR as

next state.

3

NO

8098A-AVR-09/07

 AVR463

Figure 4-11. Flow chart for HaltNow() part 4
HaltNow()

Wait for ADC
conversions to

finish.

Halt on voltage
drop selected?

Halt on maximum
voltage selected?

Halt on minimum
current selected?

Output voltage
higher than stored

maximum?
YES

Store new
maximum.

Voltage drop above
or equal to limit?NO

YES

NO

NO

Set Halt flag.

YES

Output voltage
above or equal to

limit?
YES Set Halt flag.YES

NO
NO

Output current
below or equal to

limit?
YES Set Halt flag.YES

NO

1

NO

4.4 Other Functions
The program flow is mainly state-based, but some processing takes place in the
background. This includes A/D conversion, time keeping and serial interface handling.
All of these functions are interrupt-driven.

4.4.1 A/D Conversion

The A/D converter uses the multiplexer to read in data from several channels. At the
end of a conversion the ADC Interrupt Service Routine (ISR) is called, as illustrated in
the flow chart below. After the ISR is complete program execution will return to
normal.

 19

8098A-AVR-09/07

20 AVR463

Figure 4-12. Flow chart of ADC interrupt service routine

ADC_ISR()

Disable ADC

MUX channel?

Store NTC reading Store RID reading Format and
save supply

voltage
reading

Format and
save battery

voltage
reading

Format and
save

average
battery
current

0x03

Supply voltage
low?

Flag mains failure.

YES

Set next MUX =
0x05

NO

0x05

0x17

Set next MUX =
0x17

// Flag signed
conversion next

Flag unsigned
conversion next

Set next MUX =
0x01

0x01

0x02

Set next MUX =
0x02

Set next MUX =
0x03

Update MUX

Signed
conversion

next?

Set signed
conversion

Set unsigned
conversion NO YES

Flag a compelete
ADC scan cycle

Both halt and
complete scan cycle

flagged?
Re-enable ADCNO

Return from
interrupt

YES

4.4.2 Master-Slave Communication

This application is designed to work as stand-alone but it also supports co-operation
with other microcontrollers. The Universal Serial Interface (USI) can be used for
communication between microcontrollers. The basic protocol for this interface has
been developed but some functions need to be finalised.

8098A-AVR-09/07

 AVR463

Figure 4-13. Flow chart of USI overflow interrupt service routine.
USI_OVF_ISR()

Update flags

Which state?

Save incoming data

Set address

Change state to DATA

Save incoming data

Set Read/Write flag

Set SRAM/EEPROM flag

Change state to ADDRESS

Read or write?

(not implemented)

(not implemented)

Block counter
non-zero?

Counter Zero?

Decrease counter

Set COMMAND state

Return from interrupt

COMMAND

ADDRESS

DATA

YES

NO

 21

8098A-AVR-09/07

22 AVR463
8098A-AVR-09/07

5 Quick Start Guide
This section describes how to configure, create and download the software.

5.1.1 Configuration

The most important compile-time constants are listed in the table below.

Table 5-1. Battery-related compile-time constants (see source files battery.c,
battery.h and NIMHspecs.h)

Label Description

BAT_CELL_NUMBER
The number of cells in the battery. Each of the defined cell
voltages gets multiplied with this, to define
BAT_VOLTAGE_MAX, _LOW, _MIN and _PREQUAL.

CELL_VOLTAGE_SAFETY
In case unmatched batteries are to be charged, this constant
is subtracted from CELL_VOLTAGE_MAX for every extra cell
in the battery, ie. BAT_CELL_NUMBER – 1.

CELL_VOLTAGE_MAX The maximum voltage to which a cell should be charged.

CELL_VOLTAGE_LOW The lowest voltage at which a cell is considered charged.
Charging will start when voltage drops below this level.

CELL_VOLTAGE_MIN
The lowest voltage at which charging may be initiated.
Should generally be set to the voltage limit under which
further discharge of batteries will cause damage.

CELL_VOLTAGE_PREQUAL The voltage to which a cell should be charged to during
prequalification.

BAT_TEMPERATURE_MAX The highest battery temperature allowed. Charging will stop /
not start if above this.

BAT_TEMPERATURE_MIN The lowest battery temperature allowed. Charging will stop /
not start if below this.

BAT_CURRENT_PREQUAL Charge current during prequalification mode.

BAT_CURRENT_HYST Charge current hysteresis. Current will not be adjusted when
within plus or minus this value from target.

BAT_VOLTAGE_HYST Charge voltage hysteresis. Current will not be adjusted when
within plus or minus this value from target.

BAT_VOLTAGE_PREQUAL Target voltage during prequalification stage. If this voltage is
not achieved the battery will be marked as exhausted.

BAT_TIME_PREQUAL Maximum amount of time to spend in prequalification stage.

DEF_BAT_CAPACITY Default battery capacity.

DEF_BAT_CURRENT_MAX Default maximum charge current.

DEF_BAT_TIME_MAX Default maximum charge time.

DEF_BAT_CURRENT_MIN Default cut-off charge current.

ALLOW_NO_RID
If defined, batteries without RID (or not matching the lookup-
table) will cause the charger to use the battery defaults.
Otherwise, charge is halted.

RID[].Low and RID[].High Assume RID resistance match if value within these limits.

 AVR463

 23

8098A-AVR-09/07

Label Description

RID[].Capacity Battery capacity for given RID.

RID[].Icharge Charge current for given RID.

RID[].tCutOff Maximum charge time for given RID.

RID[].IcutOff Charge termination current for given RID.

NTC[] Temperature look-up table.

5.1.2 Compilation

Before compiling the code the following configurations should be made.

Table 5-2. Compiler configuration.
Section Tab Field Value

Processor
configuration

ATtiny861 (1)

Target
Memory model Small

Data stack 0x40

Return address
stack

24
General Options

System

Enable bit
definitions …

Selected

C/C++ Compiler Language Require
prototypes

Selected

Output Format Other: ubrof8

Linker
Extra Options Command Line

-y(CODE)
-Ointel-extended,(DATA)=EXE_DIR\$PROJ_FNAME$_data.hex

-Ointel-extended,(XDATA)=EXE_DIR\$PROJ_FNAME$_eeprom.hex

Notes: 1. Other options possible. See section 3.1.1 on page 5 for more information.

5.1.3 Programming

The compiled code is conveniently downloaded to the target device using AVR Studio
and a debugger or programming tool of choice, such as the JTAGICE mkII.

Note that the compiled code contains EEPROM data that must be loaded to the target
for the software to work. Answer OK when AVR Studio asks if EEPROM contents
should be loaded. This is illustrated in the figure below.

Figure 5-1. Loading initialised data to EEPROM

24 AVR463
8098A-AVR-09/07

The program expects the use of the internal oscillator and that the clock signal is not
prescaled. Some fuse bits must be programmed to ensure proper program execution.
The fuse bit settings that deviate from the default are listed in the table below.

Table 5-3. Non-default fuse bit settings
Fuse Bit Setting Description

CKDIV8 1 (unprogrammed) Do not divide clock by eight

CKSEL3…0 0010 Use internal oscillator

6 Known Limitations
Here are listed known limitations of the design.

6.1 Detecting Battery Presence
Currently, battery presence is detected by measuring the voltage on each battery
connector. In case of fully discharged batteries, the voltage will sink to 0 Volts as
soon as the relay connects it to the sensing circuitry, causing the charger not to
detect them.

One solution is to charge such batteries for a couple of minutes with a power supply
at about 0.1 C, to raise the voltage slightly.

It is also possible to apply a charging voltage, and flag the battery as absent if no
current flows.

Note that fully discharging batteries may damage them, especially if they are multicell
batteries.

6.2 Current Hysteresis and Voltage Drop
When charging just one or two cells, the current hysteresis may cause false full
charge detection due to a voltage drop. Narrowing the hysteresis may help, but keep
in mind that the Buck converter output is not of infinite resolution.

6.3 Battery Current Measurement
Battery current is sensed using a shunt resistor with very low resistance. This means
noise is easily picked up in the measured signal and that even noise with very low
amplitude may disturb the measurements. As a remedy, the battery current measured
is averaged over four samples.

Yet, it is not uncommon to find fluctuations in the order of 1 or 2 LSB. By default (see
section 3.1.3) this means a measurement error of 7 or 14 mA (see function ScaleI() in
file ADC.c). In practice, this may result in premature end of charge cycle.

The suggested solution is to optimise the size of the shunt resistor (R410: the larger,
the better) and the resistor divider (R400…R410, R427, R428, R446 and R447).

6.4 RID Sensing
Battery identification resistor is sensed via pin PA2 (ADC2). The default pull-up
resistor on this line (R305 in ATAVRBC100 Battery Charger reference design) is 4.7
kohm. This limits the size of the sense resistor to about 14.7 kohm.

 AVR463

 25

8098A-AVR-09/07

When using Varta PoLiFlex batteries this means the largest battery size that can be
reliably sensed is 1000 mAh. For larger sense resistors / battery sizes the pull-up
resistor on BC100 must be changed. In addition, the software must be updated to
reflect the new pull-up resistor value.

6.5 Buck chargers
The choice of buck charger (and supply voltage) sets a limit on how low the minimum
charge current may be. The higher the supply voltage and the smaller the buck switch
inductor, the higher will the minimum charge current be. This means some
configurations may result in premature end of charge cycle.

The remedy is to use a low supply voltage and a buck switch with a large inductor.

7 References
1. “What’s the best battery?”. Retrieved August 1, 2007, from Battery University:

http://www.batteryuniversity.com/partone-3.htm

2. “AVR451 - BC100 Hardware User's Guide”. Available from Atmel web site:

http://www.atmel.com/products/avr/

3. “ATtiny261/461/861 Data Sheet”. Available from Atmel web site:

http://www.atmel.com/products/avr/

4. “ATtiny25/45/85 Data Sheet”. Available from Atmel web site:

http://www.atmel.com/products/avr/

5. “Duracell Ni-MH Rechargeable Batteries Technical Bulletin”. Retrieved August 1,

2007 from Duracell:
http://duracell.com/oem/Pdf/others/TECHBULL.pdf

6. “Handbook of Batteries, Third Edition”, from McGraw-Hill.

http://www.mhprofessional.com/product.php?isbn=0071359788

7. “Charging nickel-based batteries” Retrieved August 1 2007, from Battery

University:
http://www.batteryuniversity.com/partone-11.htm

http://www.batteryuniversity.com/partone-3.htm
http://www.atmel.com/products/avr/
http://www.atmel.com/products/avr/
http://www.atmel.com/products/avr/
http://duracell.com/oem/Pdf/others/TECHBULL.pdf
http://www.mhprofessional.com/product.php?isbn=0071359788
http://www.batteryuniversity.com/partone-11.htm

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8098A-AVR-09/07

	1 Introduction
	2 Theory of Operation
	2.1 NiMH Battery Technology
	2.1.1 Safety

	2.2 Charging NiMH Batteries
	2.2.1 Safety
	2.2.2 Battery Temperature
	2.2.3 Charge Time
	2.2.4 Full Charge Detection
	2.2.5 Typical Fast Charge Characteristics
	2.2.6 Typical Battery Characteristics
	2.2.7 Three Step Fast Charge

	2.3 Battery Charger
	2.3.1 Microcontroller
	2.3.2 Power supply
	2.3.3 Buck switches

	3 Battery Charger Hardware
	3.1 Configuration
	3.1.1 Microcontroller
	3.1.2 Programming Connector
	3.1.3 Jumpers
	3.1.4 Battery
	3.1.5 Battery Resistor ID
	3.1.6 NTC
	3.1.7 Data EPROM
	3.1.8 Supply Voltage

	4 Battery Charger Software
	4.1 Overview
	4.2 State Machine
	4.2.1 Initialize()
	4.2.2 BatteryControl()
	4.2.3 Charge()
	4.2.4 Sleep()
	4.2.5 Error()

	4.3 Charging Functions
	4.3.1 Constant Current/Voltage
	4.3.2 Charge Halt Determination

	4.4 Other Functions
	4.4.1 A/D Conversion
	4.4.2 Master-Slave Communication

	5 Quick Start Guide
	5.1.1 Configuration
	5.1.2 Compilation
	5.1.3 Programming

	6 Known Limitations
	6.1 Detecting Battery Presence
	6.2 Current Hysteresis and Voltage Drop
	6.3 Battery Current Measurement
	6.4 RID Sensing
	6.5 Buck chargers

	7 References

